Designing Elicitor: Software to Graphically Elicit Expert Priors for Logistic Regression Models in Ecology. 2006
نویسنده
چکیده
ELICITOR is graphical elicitation software created to elicit normal prior distributions for a Bayesian logistic regression model. Motivated by a real need to include expert knowledge in presence–absence models in ecology, this research describes a synthesis of theory from statistics, psychology and ecology. The aim was to build elicitation software that would be user friendly to environmental scientists, aiding the formal quantification of knowledge about species’ distributions and providing informative priors for a Bayesian logistic regression model. The software was written as an add-on to winBUGS, and automatically generates appropriate code so that both the model can be taken from prior to posterior within the one program. The software and expert elicitation process is demonstrated with a case study on the Brush Tailed Rock Wallaby Petrogale penicillata.
منابع مشابه
Bayesian Sample size Determination for Longitudinal Studies with Continuous Response using Marginal Models
Introduction Longitudinal study designs are common in a lot of scientific researches, especially in medical, social and economic sciences. The reason is that longitudinal studies allow researchers to measure changes of each individual over time and often have higher statistical power than cross-sectional studies. Choosing an appropriate sample size is a crucial step in a successful study. A st...
متن کاملElicitator: An expert elicitation tool for regression in ecology
Elicitator : an expert elicitation tool for regression in ecology. Abstract. Expert elicitation is the process of retrieving and quantifying expert knowledge in a particular domain. Such information is of particular value when the empirical data is expensive, limited or unreliable. This paper describes a new software tool, called Elicitator, which assists in quantifying expert knowledge in a fo...
متن کاملComparison of logistic regression and neural network models in predicting the outcome of biopsy in breast cancer from MRI findings
Background: We designed an algorithmic model based on the logistic regression analysis and a non-algorithmic model based on the Artificial Neural Network (ANN). Materials and methods: The ability of these models was compared together in clinical application to differentiate malignant from benign breast tumors in a study group of 161 patients' records. Each patient’s record consisted of 6 subjec...
متن کاملGroundwater Potential Mapping Using the Integration of the Weight of Evidence and Logistic Regression Models (A Case Study: Nahavand)
Today, supplying water to meet the sustainable development goals is one of the most important concerns and challenges in most countries. Therefore, identification of the areas with groundwater potential is an important tool for conservation, management and exploitation of water resources. The purpose of this research was to prepare the potential groundwater map in Nahavand, Hamedan Province, us...
متن کاملبهکارگیری متغیرهای پنهان در مدل رگرسیون لجستیک برای حذف اثر همخطی چندگانه در تحلیل برخی عوامل مرتبط با سرطان پستان
Background and Objectives: Logistic regression is one of the most widely used generalized linear models for analysis of the relationships between one or more explanatory variables and a categorical response. Strong correlations among explanatory variables (multicollinearity) reduce the efficiency of model to a considerable degree. In this study we used latent variables to reduce the effects of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006